Blog

Discovery and biosynthetic pathway analysis of cyclopentane–β-lactone globilactone A | Nature Synthesis

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nature Synthesis volume  3, pages 99–110 (2024 )Cite this article Pentane Cyclopentane

Discovery and biosynthetic pathway analysis of cyclopentane–β-lactone globilactone A | Nature Synthesis

Naturally occurring β-lactone compounds are a class of strained four-membered heterocycles and can act as highly reactive electrophiles. Despite intensive studies for several decades, fewer than 30 β-lactones, many of which have high clinical potential, have been characterized from microorganisms. Here we report the discovery of a β-lactone compound, globilactone A through heterologous expression of a polyketide synthase/non-ribosomal peptide synthetase-like biosynthetic gene cluster (glo) in Streptomyces albus J1074. Biosynthetic pathway studies revealed that the polyketide synthase part can synthesize a polyunsaturated polyketide chain. While the downstream non-ribosomal peptide synthetase-like module, comprising condensation, FkbH, peptidyl carrier protein and thioester reductase domains (C–FkbH–PCP–R), incorporates a three-carbon pyruvate unit, and mediates formation of two carbon–carbon bonds between the polyketide and pyruvate to give a cyclopentane intermediate tethered on acyl carrier protein. A downstream esterase, GloD, plays a direct role in the β-lactone ring formation and releases the cyclopentane–β-lactone from the assembly line.

This is a preview of subscription content, access via your institution

Receive 12 digital issues and online access to articles

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

Dale F. Kreitler, Erin M. Gemmell, … Andrew M. Gulick

Joleen Masschelein, Pauline K. Sydor, ... Gregory L. Challis

Asfandyar Sikandar, Laura Franz, … Jesko Koehnke

Data supporting the findings of this work are available within the paper and its Supplementary Information files. The DNA sequence of gene cluster glo has been deposited in GenBank with the accession number OP620071 (https://www.ncbi.nlm.nih.gov/nuccore/OP620071.1/).The source data underlying Figs. 4a–d and 5c,d; Extended Data Figs. 2, 6a,b, 8a–c, 9a–c and 10a,b are provided as a Source Data file. Source data are provided with this paper.

Lowe, C. & Vederas, J. C. Naturally occuring β-lactones: occurence, synthesis and properties. A review. Org. Prep. Proced. Int. 27, 305–346 (1995).

Robinson, S. L., Christenson, J. K. & Wackett, L. P. Biosynthesis and chemical diversity of β-lactone natural products. Nat. Prod. Rep. 36, 458–475 (2019).

Article  CAS  PubMed  Google Scholar 

Nishimura, T. et al. JBIR-155, a specific class D β-lactamase inhibitor of microbial origin. Org. Lett. 23, 4415–4419 (2021).

Article  CAS  PubMed  Google Scholar 

Shi, Y. M. et al. Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria. Nat. Chem. 14, 701–712 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Pascale, G., Nazi, I., Harrison, P. H. & Wright, G. D. β-Lactone natural products and derivatives inactivate homoserine transacetylase, a target for antimicrobial agents. J. Antibiot. 64, 483–487 (2011).

Gulder, T. A. & Moore, B. S. Salinosporamide natural products: potent 20S proteasome inhibitors as promising cancer chemotherapeutics. Angew. Chem. Int. Ed. 49, 9346–9367 (2010).

Lall, M. S., Ramtohul, Y. K., James, M. N. G. & Vederas, J. C. Serine and threonine β-lactones: a new class of hepatitis A virus 3C cysteine proteinase inhibitors. J. Org. Chem. 67, 1536–1547 (2002).

Article  CAS  PubMed  Google Scholar 

Pemble, C. W. IV, Johnson, L. C., Kridel, S. J. & Lowther, W. T. Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat. Nat. Struct. Mol. Biol. 14, 704–709 (2007).

Article  CAS  PubMed  Google Scholar 

Derosa, G. & Maffioli, P. Anti-obesity drugs: a review about their effects and their safety. Expert Opin. Drug Saf. 11, 459–471 (2012).

Article  CAS  PubMed  Google Scholar 

Torgerson, J. S., Hauptman, J., Boldrin, M. N. & Sjöström, L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care 27, 155–161 (2004).

Article  CAS  PubMed  Google Scholar 

Roth, P. et al. A phase III trial of marizomib in combination with temozolomide-based radiochemotherapy versus temozolomide-based radiochemotherapy alone in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 39, 2004 (2021).

Christenson, J. K. et al. β-Lactone synthetase found in the olefin biosynthesis pathway. Biochemistry 56, 348–351 (2017).

Article  CAS  PubMed  Google Scholar 

Schaffer, J. E., Reck, M. R., Prasad, N. K. & Wencewicz, T. A. β-Lactone formation during product release from a nonribosomal peptide synthetase. Nat. Chem. Biol. 13, 737–744 (2017).

Article  CAS  PubMed  Google Scholar 

Kreitler, D. F., Gemmell, E. M., Schaffer, J. E., Wencewicz, T. A. & Gulick, A. M. The structural basis of N-acyl-α-amino-β-lactone formation catalyzed by a nonribosomal peptide synthetase. Nat. Commun. 10, 3432–3445 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Feng, K.-N. et al. A hydrolase-catalyzed cyclization forms the fused bicyclic β-lactone in vibralactone. Angew. Chem. Int. Ed. 59, 7209–7213 (2020).

Bauman, K. D. et al. Enzymatic assembly of the salinosporamide γ-lactam–β-lactone anticancer warhead. Nat. Chem. Biol. 18, 538–546 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi, J. et al. Genome mining and biosynthesis of kitacinnamycins as a STING activator. Chem. Sci. 10, 4839–4846 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi, J. et al. Genome mining and enzymatic total biosynthesis of purincyclamide. Org. Lett. 21, 6825–6829 (2019).

Article  CAS  PubMed  Google Scholar 

Shi, J. et al. Discovery and biosynthesis of guanipiperazine from a NRPS-like pathway. Chem. Sci. 12, 2925–2930 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan, Y. A., Podevels, A. M., Kevany, B. M. & Thomas, M. G. Biosynthesis of polyketide synthase extender units. Nat. Prod. Rep. 26, 90–114 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, Y., Hong, H., Gillies, F., Spencer, J. B. & Leadlay, P. F. Glyceryl-S-acyl carrier protein as an intermediate in the biosynthesis of tetronate antibiotics. ChemBioChem 9, 150–156 (2008).

Article  CAS  PubMed  Google Scholar 

Xu, Z. F. et al. Discovery and biosynthesis of bosamycins from Streptomyces sp. 120454. Chem. Sci. 11, 9237–9245 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, L. et al. The mildiomycin biosynthesis: initial steps for sequential generation of 5-hydroxymethylcytidine 5′-monophosphate and 5-hydroxymethylcytosine in Streptoverticillium rimofaciens ZJU5119. ChemBioChem 9, 1286–1294 (2008).

Article  CAS  PubMed  Google Scholar 

Liu, D. Z. et al. Vibralactone: a lipase inhibitor with an unusual fused β-lactone produced by cultures of the basidiomycete Boreostereum vibrans. Org. Lett. 8, 5749–5752 (2006).

Article  CAS  PubMed  Google Scholar 

Morinaka, A. et al. OP0595, a new diazabicyclooctane: mode of action as a serine β-lactamase inhibitor, antibiotic and β-lactam ‘enhancer’. J. Antimicrob. Chemother. 70, 2779–2786 (2015).

Article  CAS  PubMed  Google Scholar 

Kim, B. S., Cropp, T. A., Beck, B. J., Sherman, D. H. & Reynolds, K. A. Biochemical evidence for an editing role of thioesterase II in the biosynthesis of the polyketide pikromycin. J. Biol. Chem. 277, 48028–48034 (2002).

Article  CAS  PubMed  Google Scholar 

Geyer, K., Hartmann, S., Singh, R. R. & Erb, T. J. Multiple functions of the type II thioesterase associated with the phoslactomycin polyketide synthase. Biochemistry 61, 2662–2671 (2022).

Article  CAS  PubMed  Google Scholar 

Kotowska, M. & Pawlik, K. Roles of type II thioesterases and their application for secondary metabolite yield improvement. Appl. Microbiol. Biotechnol. 98, 7735–7746 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romo, A. J. et al. The amipurimycin and miharamycin biosynthetic gene clusters: unraveling the origins of 2-aminopurinyl peptidyl nucleoside antibiotics. J. Am. Chem. Soc. 141, 14152–14159 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Etzbach, L., Plaza, A., Garcia, R., Baumann, S. & Müller, R. Cystomanamides: structure and biosynthetic pathway of a family of glycosylated lipopeptides from myxobacteria. Org. Lett. 16, 2414–2417 (2014).

Article  CAS  PubMed  Google Scholar 

Auerbach, D., Yan, F., Zhang, Y. & Müller, R. Characterization of an unusual glycerate esterification process in vioprolide biosynthesis. ACS Chem. Biol. 13, 3123–3130 (2018).

Article  CAS  PubMed  Google Scholar 

Agarwal, V. et al. Chemoenzymatic synthesis of acyl coenzyme a substrates enables in situ labeling of small molecules and proteins. Org. Lett. 17, 4452–4455 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yi, D., Acharya, A., Gumbart, J. C., Gutekunst, W. R. & Agarwal, V. Gatekeeping ketosynthases dictate initiation of assembly line biosynthesis of pyrrolic polyketides. J. Am. Chem. Soc. 143, 7617–7622 (2021).

Article  CAS  PubMed  Google Scholar 

Calderone, C. T., Bumpus, S. B., Kelleher, N. L., Walsh, C. T. & Magarvey, N. A. A ketoreductase domain in the PksJ protein of the bacillaene assembly line carries out both α- and β-ketone reduction during chain growth. Proc. Natl Acad. Sci. USA 105, 12809–12814 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scharf, D. H. et al. Epidithiol formation by an unprecedented twin carbon-sulfur lyase in the gliotoxin pathway. Angew. Chem. Int. Ed. 51, 10064–10068 (2012).

Agarwal, A., Kahyaoglu, C. & Hansen, D. B. Characterization of HmqF, a protein involved in the biosynthesis of unsaturated quinolones produced by Burkholderia thailandensis. Biochemistry 51, 1648–1657 (2012).

Article  CAS  PubMed  Google Scholar 

He, H. Y. et al. Quartromicin biosynthesis: two alternative polyketide chains produced by one polyketide synthase assembly line. Chem. Biol. 19, 1313–1323 (2012).

Article  CAS  PubMed  Google Scholar 

Süssmuth, R. D. & Mainz, A. Nonribosomal peptide synthesis—principles and prospects. Angew. Chem. Int. Ed. 56, 3770–3821 (2017).

Roche, E. D. & Walsh, C. T. Dissection of the EntF condensation domain boundary and active site residues in nonribosomal peptide synthesis. Biochemistry 42, 1334–1344 (2003).

Article  CAS  PubMed  Google Scholar 

Samel, S. A., Schoenafinger, G., Knappe, T. A., Marahiel, M. A. & Essen, L. O. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase. Structure 15, 781–792 (2007).

Article  CAS  PubMed  Google Scholar 

Barajas, J. F. et al. Comprehensive structural and biochemical analysis of the terminal myxalamid reductase domain for the engineered production of primary alcohols. Chem. Biol. 22, 1018–1029 (2015).

Article  CAS  PubMed  Google Scholar 

Kopp, F., Mahlert, C., Grünewald, J. & Marahiel, M. A. Peptide macrocyclization: the reductase of the nostocyclopeptide synthetase triggers the self-assembly of a macrocyclic imine. J. Am. Chem. Soc. 128, 16478–16479 (2006).

Article  CAS  PubMed  Google Scholar 

He, H. Y., Yuan, H., Tang, M. C. & Tang, G. L. An unusual dehydratase acting on glycerate and a ketoreducatse stereoselectively reducing α-ketone in polyketide starter unit biosynthesis. Angew. Chem. Int. Ed. 53, 11315–11319 (2014).

Bretschneider, T. et al. Vinylogous chain branching catalysed by a dedicated polyketide synthase module. Nature 502, 124–128 (2013).

Article  CAS  PubMed  Google Scholar 

Geoghegan, K. F. et al. Spontaneous α-N-6-phosphogluconoylation of a ‘His tag’ in Escherichia coli: the cause of extra mass of 258 or 178 Da in fusion proteins. Anal. Biochem. 267, 169–184 (1999).

Article  CAS  PubMed  Google Scholar 

This research was financially supported by MOST (2022YFC2303100, 2022YFC2804100 and 2018YFA0902000), NSFC (81925033, 22193071, 22107048, 22077062, 81991522 and 81991524). We thank H. Zheng (China Pharmaceutical University) for his generous gift of expression plasmid NDM-1.

State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China

Zi Fei Xu, Ye Lei Zhou, Sheng Tao Bo, Jing Shi, Lang Xiang, Meng Yu Xi, Bo Zhang, Ren Xiang Tan & Hui Ming Ge

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China

Shou Qi Zhang & Zheng Ren Xu

Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA

Dong Yang & Ben Shen

Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA

Dong Yang & Ben Shen

Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, University of Florida, Jupiter, FL, USA

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

You can also search for this author in PubMed  Google Scholar

Z.F.X., Y.L.Z. and S.T.B. carried out experiments. L.X., M.Y.X., J.S., B.Z. and R.X.T. assisted in NMR and MS data measurement and analysis. S.Q.Z., Z.R.X., D.Y. and B.S. contributed materials. Z.F.X. and H.M.G. wrote the paper. H.M.G. supervised the work. All authors discussed the results and analysed the data.

Correspondence to Ren Xiang Tan or Hui Ming Ge.

The authors declare no competing interests.

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

cis-3-octyl-4-nonyloxetan-2-one (a), obafluorin (b), vibralactone (c), salinosporamide A (d).

An IC50 value against class A β-lactamase of 1 was 15.05 μM.

a Reaction scheme for the GloE activity assay. b HPLC analysis of the enzymatic assays of GloE with 4. c HPLC analysis of the enzymatic assays of GloE with 1.

Heavy bars denote contiguous 13C labels of connected atoms, dots denote single 13C labels.

Reaction scheme depicting chemoenzymatic synthesis and subsequent acylation assay to generate 8-S-ACP (GloB), 8-S-ACP-C-FkbH (GloB) (a) and 13-S-GloC-GloD (b).

a LC-MS analysis of the one-pot enzymatic total biosynthesis of 10. i) boiled holo-GloC-GloD, 8-S-ACP-C-FkbH (GloB), 1,3-BPG, NADPH and N-acetyl-L-cysteine; ii) holo-GloC-GloD, 8-S-ACP-C-FkbH (GloB), 1,3-BPG and N-acetyl-L-cysteine; iii) holo-GloC-GloD, 8-S-ACP-C-FkbH (GloB), 1,3-BPG, NADPH and N-acetyl-L-cysteine. b high-resolution MS (HRMS) data of 10.

Reaction scheme depicting chemoenzymatic synthesis and subsequent acylation assay to generate 11-S-ACP-C-FkbH (GloB).

a holo-ACP (GloB). b ACP-tethered linear substrate (8-S-ACP) from pantetheine-activated (8c) via in vitro CoA biosynthesis and Sfp-mediated loading. c holo-GloC-GloD, holo-ACP-C-FkbH (GloB), 1,3-BPG, NADPH and 8-S-ACP. Additional peaks marked by asterisks represent adventitious gluconylation (+178 Da) of N-terminal His6-tag during expression of the recombinant protein in E. coli.

a holo-ACP (GloB). b ACP-tethered linear substrate (8-S-ACP) from pantetheine-activated (8c) via in vitro CoA biosynthesis and Sfp-mediated loading. c holo-GloC-GloD, holo-ACP-C-FkbH (GloB), 1,3-BPG, NADPH and 8-S-ACP.

a LC-MS analysis of the one-pot enzymatic total biosynthesis of 3. b Mass spectrometric analysis of production of acylated ACP (12). Additional peaks marked by asterisks represent adventitious gluconylation (+178 Da) of N-terminal His6-tag during expression of the recombinant protein in E. coli.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Xu, Z.F., Zhou, Y.L., Bo, S.T. et al. Discovery and biosynthetic pathway analysis of cyclopentane–β-lactone globilactone A. Nat. Synth 3, 99–110 (2024). https://doi.org/10.1038/s44160-023-00414-3

DOI: https://doi.org/10.1038/s44160-023-00414-3

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Nature Synthesis (Nat. Synth) ISSN 2731-0582 (online)

Discovery and biosynthetic pathway analysis of cyclopentane–β-lactone globilactone A | Nature Synthesis

Cyclopentane Sds Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.