Blog

CrossRef Full Text | Google Scholar

Li, Y., Xu, G., Cui, C., and Li, Y. (2017). Flexible and semitransparent organic solar cells. Adv. Energy Mater. 8 (7), 1701791. doi:10.1002/aenm.201701791 wifi inkjet printer

CrossRef Full Text | Google Scholar

Five, Gr, Braga, JP, Gozzi, G., and Fugikakawa, L.-S. (2020). On the reproducibility of spray-coated Zno Thin-FILM transistors. Mrs. Adv. 5 (35–36), 1859–1 doi:10.1557/ADV.2020.199

CrossRef Full Text | Google Scholar

Linghu, C., Zhand, S., Wang, C., and Song, J. (2018). Transfer printing techniques for flexible and stretchable inorganic electronics. npj Flex. Electron. 2 (1), 26. doi:10.1038/s41528-018-0037-x

CrossRef Full Text | Google Scholar

Lipomi, D. J., Tee, B. C.-K., Vosgueritchian, M., and Bao, Z. (2011). Stretchable organic solar cells. Adv. Mater. 23 (15), 1771–1775. doi:10.1002/adma.201004426

CrossRef Full Text | Google Scholar

Liu, H., Jian, R., Chen, H., Tian, X., Sun, C., Zhu, J., et al. (2019). Application of biodegradable and biocompatible nanocomposites in electronics: current status and future directions. Nanomaterials 9 (7), 950. doi:10.3390/nano9070950

CrossRef Full Text | Google Scholar

Liu, J., Zhang, L., and Li, C. (2019). Highly stable, transparent, and conductive electrode of solution-processed silver nanowire-mxene for flexible alternating-current electroluminescent devices. Ind. Eng. Chem. Res. 58 (47), 21485–21492. doi:10.1021/acs.iecr.9b04329

CrossRef Full Text | Google Scholar

Liu, Y., Weng, B., Razal, J. M., Xu, Q., Zhao, C., Hou, Y., et al. (2015). High-performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films. Sci. Rep. 5 (1), 17045. doi:10.1038/srep17045

CrossRef Full Text | Google Scholar

Liu, Y.-F., An, M.-H., Bi, Y.-G., Yin, D., Feng, J., and Sun, H.-B. (2017). Flexible efficient top-emitting organic light-emitting devices on a silk substrate. IEEE Photon. J. 9 (5), 1–6. doi:10.1109/jphot.2017.2740618

CrossRef Full Text | Google Scholar

Liu, Y.-F., Feng, J., Bi, Y.-G., Yin, D., and Sun, H.-B. (2019). Recent developments in flexible organic light-emitting devices. Adv. Mater. Technol. 4 (1), 1800371. doi:10.1002/admt.201800371

CrossRef Full Text | Google Scholar

Lumelsky, V. J., Shur, M. S., and Wagner, S. (2001). Sensitive skin. IEEE Sens. J. 1 (1), 41–51. doi:10.1109/jsen.2001.923586

CrossRef Full Text | Google Scholar

Ma, J., Sung, J., Hong, J., Chae, S., Kim, N., Choi, S.-H., et al. (2019). Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes. Nat. Commun. 10 (1), 475. doi:10.1038/s41467-018-08233-3

CrossRef Full Text | Google Scholar

Manjakkal, L., Núñez, C. G., Dang, W., and Dahiya, R. (2018). Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 51, 604–6012. doi:10.1016/j.nanoen.2018.06.072

CrossRef Full Text | Google Scholar

Manjakkal, L., Pullanchiyodan, A., Yogeswaran, N., Hosseini, E. S., and Dahiya, R. (2020). A wearable supercapacitor based on conductive PEDOT:PSS‐coated cloth and a sweat electrolyte. Adv. Mater. 32 (24), 1907254. doi:10.1002/adma.201907254

CrossRef Full Text | Google Scholar

Manzanares-Palenzuela, C. L., Hermanova, S., Sofer, Z., and Pumera, M. (2019). Proteinase-sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures. Nanoscale 11 (25), 12124–12131. doi:10.1039/c9nr02754h

CrossRef Full Text | Google Scholar

Mathies, F., Eggers, H., Richards, B. S., Hernandez-Sosa, G., Lemmer, U., and Paetzold, U. W. (2018). Inkjet-printed triple cation perovskite solar cells. ACS Appl. Energy Mater. 1 (5), 1834–1839. doi:10.1021/acsaem.8b00222

CrossRef Full Text | Google Scholar

Mohamadzade, B., Hashmi, R. M., Simorangkir, R. B. V. B., Gharaei, R., Ur Rehman, S., and Abbasi, Q. H. (2019). Recent advances in fabrication methods for flexible antennas in wearable devices: state of the art. Sensors 19 (10), 2312. doi:10.3390/s19102312

CrossRef Full Text | Google Scholar

Moon, I. K., Ki, B., and Oh, J. (2020). Three-dimensional porous stretchable supercapacitor with wavy structured PEDOT:PSS/graphene electrode. Chem. Eng. J. 392, 123794. doi:10.1016/j.cej.2019.123794

CrossRef Full Text | Google Scholar

Murat, A., Yokus, T. S., Pozdin, V. A., Bozkurt, A., and Daniel, M. A. (2020). Wearable multiplexed biosensor system toward continuous monitoring of metabolites. Biosens. Bioelectron. 153, 112038. doi:10.1016/j.bios.2020.112038

CrossRef Full Text | Google Scholar

Nair, P. K., and Nair, M. T. S. (1987). Prospects of chemically deposited Cds thin films in solar cell applications. Solar Cells 22 (2), 103–112. doi:10.1016/0379-6787(87)90050-0

CrossRef Full Text | Google Scholar

Nan, K., Kang, S. D., Li, K., Yu, K. J., Zhu, F., Wang, J., et al. (2018). Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci. Adv. 4 (11), eaau5849. doi:10.1126/sciadv.aau5849

CrossRef Full Text | Google Scholar

National Research Council (2014). The flexible electronics opportunity. Washington, DC: The National Academies Press , 328.

Nayak, L., Mohanty, S., Nayak, S. K., and Ramadoss, A. (2019). A review on inkjet printing of nanoparticle inks for flexible electronics. J. Mater. Chem. C 7 (29), 8771–8795. doi:10.1039/c9tc01630a

CrossRef Full Text | Google Scholar

Noelle, D. J., Wang, M., Shi, Y., and Qiao, Y. (2018). Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting. Appl. Energy 212 (12), 796–808. doi:10.1016/j.apenergy.2017.12.086

CrossRef Full Text | Google Scholar

Noh, J., Jung, K., Kim, J., Kim, S., Cho, S., and Cho, G. (2012). Fully gravure-printed flexible full adder using SWNT-based TFTs. IEEE Electron. Device Lett. 33 (11), 1574–1576. doi:10.1109/led.2012.2214757

CrossRef Full Text | Google Scholar

Novoselov, KS, genim, Ak, Morozov, Sv, Jiang, D., Zhang, Y., Dubonos, Sv, et al. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666. Doi:10.1126/Science.1102896

CrossRef Full Text | Google Scholar

Oh, B., Park, Y.-G., Jung, H., Ji, S., Cheong, W. H., Cheon, J., et al. (2020). Untethered soft robotics with fully integrated wireless sensing and actuating systems for somatosensory and respiratory functions. Soft Robot. [Epub ahead of print]. doi:10.1089/soro.2019.0066

CrossRef Full Text | Google Scholar

Oh, J. Y., Rondeau-Gagné, S., Chiu, Y.-C., Chortos, A., Lissel, F., Wang, G.-J. N., et al. (2016). Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539 (7629), 411–415. doi:10.1038/nature20102

CrossRef Full Text | Google Scholar

Ohayon, D., Nikiforidis, G., Savva, A., Giugni, A., Wustoni, S., Palanisamy, T., et al. (2020). Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nat. Mater. 19 (4), 456–463. doi:10.1038/s41563-019-0556-4

CrossRef Full Text | Google Scholar

Okaliwa, H., Nakatani, K., Asan, M., Suzuki, K., Yano, M., hirasaka, M., et et et et et et. (1983). Hydrogetened Amorphous Silicon Solar Cell on Organic Polymer Substate. Inst. Electron. Commun. Eng. Jpn. Trans. Sec. E eng. 66,

Okita, K., Kato, M.-N., Onoe, H., and Shoji, T. (2013). “Neurospheroid array on a flexible substrate for cortical microstimulation,” in IEEE 26th international conference on micro electro mechanical systems (MEMS) , Taipei, Taiwan , January 20–24, 2013 , 221–224.

Ortega, L., Llorella, A., Esquivel, J. P., and Sabate, N. (2019). Self-powered smart patch for sweat conductivity monitoring. Microsyst. Nanoeng. 5 (1), 3. doi:10.1038/s41378-018-0043-0

CrossRef Full Text | Google Scholar

Ostfeld, A. E., Deckman, L., Gaikwad, A., Lochner, C. M., and Arias, A. C. (2015). Screen printed passive components for flexible power electronics. Sci. Rep. 5 (1), 15959. doi:10.1038/srep15959

CrossRef Full Text | Google Scholar

Ota, H., Emaminejad, S., Gao, Y., Zhao, A., Wu, E., Challa, S., et al. (2016). Application of 3D printing for smart objects with embedded electronic sensors and systems. Adv. Mater. Technol. 1 (1), 1600013. doi:10.1002/admt.201600013

CrossRef Full Text | Google Scholar

Pan, Z., Yang, J., Zhang, Q., Liu, M., Hu, Y., Kou, Z., et al. (2019). All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility. Adv. Energy Mater. 9 (9), 1–10. doi:10.1002/aenm.201802753

CrossRef Full Text | Google Scholar

Pang, C., Koo, J. H., Nguyen, A., Caves, J. M., Kim, M.-G., Chortos, A., et al. (2015). Highly skin-conformal microhairy sensor for pulse signal amplification. Adv. Mater. 27, 634–640. doi:10.1002/adma.201403807

CrossRef Full Text | Google Scholar

Park, J. D., Lim, S., and Kim, H. (2015). Patterned silver nanowires using the gravure printing process for flexible applications. Thin Solid Films 586, 70–75. doi:10.1016/j.tsf.2015.04.055

CrossRef Full Text | Google Scholar

Park, J. S., Kim, T., and Kim, W. S. (2017). Conductive cellulose composites with low percolation threshold for 3D printed electronics. Sci. Rep. 7 (1), 3246. doi:10.1038/s41598-017-03365-w

CrossRef Full Text | Google Scholar

Park, S., Heo, S. W., Lee, W., Inoue, D., Jiang, Z., Yu, K., et al. (2018). Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561 (7724), 516–521. doi:10.1038/s41586-018-0536-x

CrossRef Full Text | Google Scholar

Peng, J., Witting, I., Geisendorfer, N., Wang, M., Jakus, A., Kenel, C., et al. (2019). 3D extruded composite thermoelectric threads for flexible energy harvesting. Nat. Commun. 10 (1), 5590. doi:10.1038/s41467-019-13461-2

CrossRef Full Text | Google Scholar

Poorkazem, K., Liu, D., and Kelly, T. L. (2015). Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell. J. Mater. Chem. 3 (17), 9241–9248. doi:10.1039/c5ta00084j

CrossRef Full Text | Google Scholar

Pushparaj, V. L., Shaijumon, M. M., Kumar, A., Murugesan, S., Ci, L., Vajtai, R., et al. (2007). Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. U.S.A. 104 (34), 13574–13577. doi:10.1073/pnas.0706508104

CrossRef Full Text | Google Scholar

Qian, Y., and Kang, D. J. (2018). Poly(dimethylsiloxane)/ZnO nanoflakes/three-dimensional graphene heterostructures for high-performance flexible energy harvesters with simultaneous piezoelectric and triboelectric generation. ACS Appl. Mater. Interfaces 10 (38), 32281–32288. doi:10.1021/acsami.8b05636

CrossRef Full Text | Google Scholar

Qin, J., Lan, L., Chen, S., Huaug, F., Shi, H., Chen, W., et al. (2020). Recent progress in flexible and stretchable organic solar cells. Adv. Funct. Mater. 30 (36), 2002529.

Rachim, V. P., and Chung, W.-Y. (2019a). Multimodal wrist biosensor for wearable cuff-less blood pressure monitoring system. Sci. Rep. 9, 7949. doi:10.1038/s41598-019-44348-3

CrossRef Full Text | Google Scholar

Rachim, V. P., and Chung, W.-Y. (2019b). Wearable-band type visible-near infrared zoptical biosensor for non-invasive blood glucose monitoring. Sensor Actuator. B Chem. 286, 173–180. doi:10.1016/j.snb.2019.01.121

CrossRef Full Text | Google Scholar

Raghu Das, D. X. H., and Ghaffarzadeh, K. (2020). Flexible, printed and organic electronics 2020–2030: forecasts, technologies, markets.

Ren, J., Ren, R.-P., and Lv, Y.-K. (2018). A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery. Chem. Eng. J. 353, 419–424. doi:10.1016/j.cej.2018.07.139

CrossRef Full Text | Google Scholar

Rojas, J. P., Torres Sevilla, G. A., Ghoneim, M. T., Inayat, S. B., Ahmed, S. M., Hussain, A. M., et al. (2014). Transformational silicon electronics. ACS Nano 8 (2), 1468–1474. doi:10.1021/nn405475k

CrossRef Full Text | Google Scholar

Rojas, J. P., Torres Sevilla, G. A., and Hussain, M. M. (2013). Can we build a truly high performance computer which is flexible and transparent? Sci. Rep. 3 (1), 2609. doi:10.1038/srep02609

CrossRef Full Text | Google Scholar

Russ, B., Glaudell, A., Urban, J. J., Chabinyc, M. L., and Segalman, R. A. (2016). Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1 (10), 16050. doi:10.1038/natrevmats.2016.50

CrossRef Full Text | Google Scholar

Ryu, S., Lee, P., Chou, J. B., Xu, R., Zhao, R., Hart, A. J., et al. (2015). Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9 (6), 5929–5936. doi:10.1021/acsnano.5b00599

CrossRef Full Text | Google Scholar

Say, M. G., Brooke, R., Edberg, J., Grimoldi, A., Belaineh, D., Engquist, I., et al. (2020). Spray-coated paper supercapacitors. npj Flex. Electron. 4 (1), 14. doi:10.1038/s41528-020-0079-8

CrossRef Full Text | Google Scholar

Schwartz, G., Tee, C.-K. B., Mei, J., Appleton, A. L., Kim, D. H., Wang, H., et al. (2013). Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859. doi:10.1038/ncomms2832

CrossRef Full Text | Google Scholar

Scidà, A., Haque, S., Robinson, A., Smerzi, S., Ravesi, S., Borini, S., et al. (2018). Application of graphene-based flexible antennas in consumer electronic devices. Mater. Today 21 (3), 223–230. doi:10.1016/j.mattod.2018.01.007

CrossRef Full Text | Google Scholar

Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., et al. (2009). Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8 (6), 494–499. doi:10.1038/nmat2459

CrossRef Full Text | Google Scholar

Seungyong Han, J. K., Won, S. M., Ma, Y., Kang, D., Xie, Z., Lee, K.-T., et al. (2018). Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci. Transl. Med. 10 (435), eaan4950. doi:10.1126/scitranslmed.aan4950

CrossRef Full Text | Google Scholar

Shahrjerdi, D., and Bedell, S. W. (2013). Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. Nano Lett. 13 (1), 315–320. doi:10.1021/nl304310x

CrossRef Full Text | Google Scholar

Shi, W., Guo, Y., and Liu, Y. (2020). When flexible organic field‐effect transistors meet biomimetics: a prospective view of the internet of things. Adv. Mater. 32 (15), 1901493. doi:10.1002/adma.201901493

CrossRef Full Text | Google Scholar

Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., and Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 578–580. doi:10.1039/c39770000578

CrossRef Full Text | Google Scholar

Singh, E., Meyyappan, M., and Nalwa, H. S. (2017). Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 9 (40), 34544–34586. doi:10.1021/acsami.7b07063

CrossRef Full Text | Google Scholar

Singh, R., Singh, E., and Nalwa, H. S. (2017). Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things. RSC Adv. 7, 48597–48630. doi:10.1039/c7ra07191d

CrossRef Full Text | Google Scholar

Smith, P. M., Carey, P. G., and Sigmon, T. W. (1997). Excimer laser crystallization and doping of silicon films on plastic substrates. Appl. Phys. Lett. 70 (3), 342–344. doi:10.1063/1.118409

CrossRef Full Text | Google Scholar

So, H.-M., Sim, J. W., Kwon, J., Yun, J., Baik, S., and Chang, W. S. (2013). Carbon nanotube based pressure sensor for flexible electronics. Mater. Res. Bull. 48 (12), 5036–5039. doi:10.1016/j.materresbull.2013.07.022

CrossRef Full Text | Google Scholar

Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T. (2004). A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U.S.A. 101 (27), 9966–9970. doi:10.1073/pnas.0401918101

CrossRef Full Text | Google Scholar

Song, B., Wu, F., Moon, K.-S., Bahr, R., Tenzeris, M., and Wong, C. P. (2018). “Stretchable, printable and electrically conductive composites for wearable RF antennas,” in IEEE 68th electronic components and technology conference (ECTC) , San Diego, CA , May 29–June 1, 2018 .

Song, D., Mahajan, A., Secor, E. B., Hersam, M. C., Francis, L. F., and Frisbie, C. D. (2017). High-resolution transfer printing of graphene lines for fully printed, flexible electronics. ACS Nano 11 (7), 7431–7439. doi:10.1021/acsnano.7b03795

CrossRef Full Text | Google Scholar

Song, R., Wang, Q., Mao, B., Wang, Z., Tang, D., Zhang, B., et al. (2018). Flexible graphite films with high conductivity for radio-frequency antennas. Carbon 130, 164–169. doi:10.1016/j.carbon.2018.01.019

CrossRef Full Text | Google Scholar

Tan, H. W., An, J., Chua, C. K., and Tran, T. (2019). Metallic nanoparticle inks for 3D printing of electronics. Adv. Electron. Mater. 5 (5), 1800831. doi:10.1002/aelm.201800831

CrossRef Full Text | Google Scholar

Tang, C. W., and VanSlyke, S. A. (1987). Organic electroluminescent diodes. Appl. Phys. Lett. 51 (12), 913–915. doi:10.1063/1.98799

CrossRef Full Text | Google Scholar

Taniya Purkait, G. S., Kumar, D., Singh, M., and Dey, R. S. (2018). High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci. Rep. 8, 604. doi:10.1038/s41598-017-18593-3

CrossRef Full Text | Google Scholar

Tee, B. C.-K., Wang, C., Allen, R., and Bao, Z. (2012). An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7 (12), 825–832. doi:10.1038/nnano.2012.192

CrossRef Full Text | Google Scholar

Torres Sevilla, G. A., Ghoneim, M. T., Fahad, H., Rojas, J. P., Hussain, A. M., and Hussain, M. M. (2014). Flexible nanoscale high-performance FinFETs. ACS Nano 8 (10), 9850–9856. doi:10.1021/nn5041608

CrossRef Full Text | Google Scholar

Ummartyotin, S., Juntaro, J., Sain, M., and Manuspiya, H. (2012). Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind. Crop. Prod. 35 (1), 92–97. doi:10.1016/j.indcrop.2011.06.025

CrossRef Full Text | Google Scholar

Villalva, D. R., Md. Haque, M., Nugraha, M. I., and Baran, D. (2020). Enhanced thermoelectric performance and lifetime in acid-doped PEDOT:PSS films via work function modification. ACS Appl. Energy Mater. doi:10.1021/acsaem.0c01511

CrossRef Full Text | Google Scholar

Viswanathan, S., Narayanan, T. N., Aran, K., Fink, K. D., Paredes, J., Ajayan, P. M., et al. (2015). Graphene-protein field effect biosensors: glucose sensing. Mater. Today 18 (9), 513–522. doi:10.1016/j.mattod.2015.04.003

CrossRef Full Text | Google Scholar

Wang, D., Yuan, G., Hao, G., and Wang, Y. (2018). All-inorganic flexible piezoelectric energy harvester enabled by two-dimensional mica. Nano Energy 43, 351–358. doi:10.1016/j.nanoen.2017.11.037

CrossRef Full Text | Google Scholar

Wang, L., Jackman, J. A., Tan, E.-L., Park, J. H., Potroz, M. G., Hwang, E. T., and Cho, N.-J. (2017). High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy 36, 38–45. doi:10.1016/j.nanoen.2017.04.015

CrossRef Full Text | Google Scholar

Wang, X., Zhi, L., and Müllen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8 (1), 323–327. doi:10.1021/nl072838r

CrossRef Full Text | Google Scholar

Wang, Y., Shi, Z., Huang, Y., Ma, Y., Wang, C., Chen, M., et al. (2009). Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107. doi:10.1021/jp902214f

CrossRef Full Text | Google Scholar

Wang, Y., Zhang, Y.-Z., Dubbink, D., and ten Elshof, J. E. (2018). Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor. Nano Energy 49, 481–488. doi:10.1016/j.nanoen.2018.05.002

CrossRef Full Text | Google Scholar

Wen, Z., Yang, Y., Sun, N., Li, G., Liu, Y., Chen, C., et al. (2018). A wrinkled PEDOT:PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors. Adv. Funct. Mater. 28 (37), 1803684. doi:10.1002/adfm.201803684

CrossRef Full Text | Google Scholar

Wiorek, A., Cuartero, M., and Crespo, G. A. (2020). Epidermal patch with glucose biosensor: pH and temperature correction toward more accurate sweat analysis during sport practice. Anal. Chem. 92 (14), 10153–10161. doi:10.1021/acs.analchem.0c02211

CrossRef Full Text | Google Scholar

Wu, C. C., Theiuss, S. D., Gu, G., Lu, M. H., Sturm, J. C., Wagner, S., et al. (1997). Integration of organic LEDs and amorphous Si TFTs onto flexible and lightweight metal foil substrates. IEEE Electron. Device Lett. 18 (12), 609–612. doi:10.1109/55.644086

CrossRef Full Text | Google Scholar

Wu, W., Wen, X., and Wang, Z. L. (2013). Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340 (6135), 952. doi:10.1126/science.1234855

CrossRef Full Text | Google Scholar

Wustoni, S., Savva, A., Sun, R., Bihar, E., and Inal, S. (2019). Enzyme‐free detection of glucose with a hybrid conductive gel electrode. Adv. Mater. Interfaces 6 (1), 1800928. doi:10.1002/admi.201800928

CrossRef Full Text | Google Scholar

Xing, J., Tao, P., Wu, Z., Xing, C., Liao, X., and Nie, S. (2019). Nanocellulose-graphene composites: a promising nanomaterial for flexible supercapacitors. Carbohydr. Polym. 207, 447–459. doi:10.1016/j.carbpol.2018.12.010

CrossRef Full Text | Google Scholar

Xuan, Y., Sandberg, M., Berggren, M., and Crispin, X. (2012). An all-polymer-air PEDOT battery. Org. Electron. 13 (4), 632–637. doi:10.1016/j.orgel.2011.12.018

CrossRef Full Text | Google Scholar

Yamada, T., Hayamizu, Y., Yamagoo, Y., Yokida, Y., Izid-Nice-N., Fabah, DN, and al. (2011). Stitcher carbon note for the sensor. Nant. Nonteching. 6 (5), 296–3 doom:10.1038/nung.2011.3

CrossRef Full Text | Google Scholar

Yamaguchi, T., Kashiwagi, T., Arie, T., Akita, S., and Takei, K. (2019). Human‐like electronic skin‐integrated soft robotic hand. Adv. Intell. Syst. 1 (2), 1900018. doi:10.1002/aisy.201900018

CrossRef Full Text | Google Scholar

Yang, Y. (2020). A mini-review: emerging all-solid-state energy storage electrode materials for flexible devices. Nanoscale 12, 3560–3573. doi:10.1039/c9nr08722b

CrossRef Full Text | Google Scholar

Yao, J., Yan, H., and Lieber, C. M. (2013). A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 8 (5), 329–335. doi:10.1038/nnano.2013.55

CrossRef Full Text | Google Scholar

Yoon, D. H., Yoon, S. H., Ryu, K. S., and Park, Y. J. (2016). PEDOT:PSS as multi-functional composite material for enhanced Li-air-battery air electrodes. Sci. Rep. 6 (1), 19962. doi:10.1038/srep19962

CrossRef Full Text | Google Scholar

Yu, G., Gao, J., Hummelen, J. C., Wudl, F., and Heeger, A. J. (1995). Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270 (5243), 1789–1791. doi:10.1126/science.270.5243.1789

CrossRef Full Text | Google Scholar

Yu, X., Zhou, N., Han, S., Lin, H., Buchholz, D. B., Yu, J., et al. (2013). Flexible spray-coated TIPS-pentacene organic thin-film transistors as ammonia gas sensors. J. Mater. Chem. C 1 (40), 6532–6535. doi:10.1039/c3tc31412j

CrossRef Full Text | Google Scholar

Yuan, W., Wang, B., Wu, H., Xiang, M., Wang, Q., Liu, H., et al. (2018). A flexible 3D nitrogen-doped carbon foam@CNTs hybrid hosting TiO2 nanoparticles as free-standing electrode for ultra-long cycling lithium-ion batteries. J. Power Sources 379, 10–19. doi:10.1016/j.jpowsour.2018.01.023

CrossRef Full Text | Google Scholar

Zardetto, V., Brown, T. M., Reale, A., and Di Carlo, A. (2011). Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J. Polym. Sci. B Polym. Phys. 49 (9), 638–648. doi:10.1002/polb.22227

CrossRef Full Text | Google Scholar

Zhai, Y., Mathew, L., Rao, R., Xu, D., and Banerjee, S. K. (2012). High-performance flexible thin-film transistors exfoliated from bulk wafer. Nano Lett. 12 (11), 5609–5615. doi:10.1021/nl302735f

CrossRef Full Text | Google Scholar

Zhang, C., Zhang, Z., Yang, Q., and Chen, W. (2018). Graphene-based electrochemical glucose sensors: fabrication and sensing properties. Electroanalysis 30 (11), 2504–2524. doi:10.1002/elan.201800522

CrossRef Full Text | Google Scholar

Zhang, X., Oberg, V. A., Du, J., Liu, J., and Johansson, E. M. J. (2017). Extremely lightweight and ultra-flexible infrared light converting quantum dot solar cells with high power-per-weight output using a solution-processed bending durable silver nanowire based electrode. Energy Environ. Sci. 11, 354. doi:10.1039/C7EE02772A

CrossRef Full Text | Google Scholar

Zhang, Y.-Z., Lee, K. H., Anjum, D. H., Sougrat, R., Jiang, Q., Kim, H., et al. (2018). MXenes stretch hydrogel sensor performance to new limits. Science Advances 4 (6), eaat0098. doi:10.1126/sciadv.aat0098

CrossRef Full Text | Google Scholar

Zhang, Y.-Z., Wang, Y., Jiang, Q., El‐Demellawi, J. K., Kim, H., and Alshareef, H. N. (2020). MXene printing and patterned coating for device applications. Adv. Mater. 32 (21), 1908486. doi:10.1002/adma.201908486

CrossRef Full Text | Google Scholar

Zhao, X., Han, W., Zhao, C., Wang, S., Kong, F., Ji, X., et al. (2019). Fabrication of transparent paper-based flexible thermoelectric generator for wearable energy harvester using modified distributor printing technology. ACS Appl. Mater. Interfaces 11 (10), 10301–10309. doi:10.1021/acsami.8b21716

CrossRef Full Text | Google Scholar

Zhaoqian Xie, R. A., Huang, Y., and Rogers, J. A. (2019). Flexible and stretchable antennas for biointegrated electronics. Adv. Mater. 32 (15), 1–16. doi:10.1002/adma.20190276

Znajdek, K., Sibiński, M., Strąkowska, A., and Lisik, Z. (2016). Polymer substrates for flexible photovoltaic cells application in personal electronic system. Opto-Electron. Rev. 24 (1), 20. doi:10.1515/oere-2016-0001

CrossRef Full Text | Google Scholar

Keywords: flexible electronics, stretchable, printing, healable electronics, electronic device, optoelectronic, device, soft robotics, solar cell, transistor, thermoelectric, sensors

CITITION: Corzo D, Tostado-Blázquez G and Baran D (2020) Flexible Electronics: status, challenges and opportunities. Front. Electron. 1: 594003. DOI: 10.3389/Felec.2020.594003

Received: 12 August 2020; Accepted: 03 September 2020; Published: 30 September 2020.

Copyright © 2020 Baran, Corzo and Blazquez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Derya Baran, ZgVyeweymfyyW5AA2F1C3QUzWR1LNNH

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Learn more about the work of our research integrity team to safeguard the quality of each article we publish.

pouch printing machine inkjet printer Learn more about the work of our research integrity team to safeguard the quality of each article we publish.