Blog

Bio-Carbon Quantum Dots Boost TiO2 Photocatalytic Performance

A paper recently published in the journal Molecules investigated the feasibility of using a bio-carbon quantum dot (CQD)-decorated titanium dioxide (TiO2) (CQD/TiO2) for removal/photocatalytic degradation of naphthalene under sunlight irradiation/ visible light environment. Macroalgae served as the precursor for the CQDs in this research.

Polycyclic aromatic hydrocarbons (PAHs) pose a significant risk to human health owing to their mutagenic, carcinogenic, and teratogenic effects. In recent years, TiO2 photocatalysis has gained significant attention as an aquatic PAH remediation technology owing to its robust capacity for oxidation, high catalytic efficiency, and good photochemical stability. High-Quality Structure Of Tio2 Suppliers

Bio-Carbon Quantum Dots Boost TiO2 Photocatalytic Performance

However, unmodified TiO2 displays low carrier utilization and is less active in the visible region due to its high rate of photo-generated electron-hole pair recombination and wide band gap, which significantly hinder its extensive adoption. Several studies have been performed to develop modified TiO2 photocatalyst systems to maximize visible light utilization.

Carbon doping technologies can overcome several limitations of TiO2, such as its poor light absorption and utilization. Among these technologies, carbon quantum dots (CQDs) stand out due to their efficient electron transfer, easy tunability, up-conversion fluorescence, and strong photoluminescence.

However, the top-down method traditionally used for preparing CQDs faces limitations, including the requirement for carbon precursors with a large sp2 hybridization area. Conversely, the bottom-up synthesis method is widely favored for its practicality and simplicity.

Recently, the use of eco-friendly, affordable, and readily accessible natural resources as carbon precursors has gained traction in research. Particularly, the production of CQDs from biomass—especially waste biomass—has become a focus of study. For example, a recent study utilized the fast-growing macroalgae Sargassum horneri (S.H.) as a precursor for CQDs.

In this study, CQD/TiO2 was synthesized using an ultrasonic doping method and applied in naphthalene's photocatalytic degradation under sunlight irradiation. The CQDs were prepared from a typical macroalgae, S.H., through hydrothermal synthesis and diluted sulfuric acid pretreatment using an optimal design with 3.0 % sulfuric acid and a hydrothermal condition of 200 °C.

Biomass CQDs can combine with semiconductors like TiO2 to form potential photocatalysts, as their surface is rich in oxygen-containing functional groups. Recent studies have shown that algae and their derived carbon materials act as co-catalysts when combined with TiO2.

However, CQD/TiO2 photocatalysts synthesized using biomass are also impacted by their complex biological compositions, which necessitates the development of a suitable pretreatment method to destroy the natural plant structure's cellulose and increase the porosity and specific surface area of raw materials.

In this work, pretreatment using dilute sulfuric acid was performed to realize both objectives. Specifically, the porosity and specific surface area of the S.H. were increased, and a 10-fold rise in CQD yield, from 2.3 % to 18.9 %, was achieved using the pretreatment method.

The diluted acid pretreatment successfully broke down lignin and hemicellulose in the biomass, aiding in the synthesis of carbonaceous materials. Subsequently, the mixture was centrifuged at 10,000 rpm for one minute, repeated three times, to remove large particles from the resulting CQDs

Following this, a 0.22 μm polyethersulfone membrane was utilized to neutralize and separate the components, yielding a liquid CQD solution. This liquid was then freeze-dried to produce a solid CQD powder. The photocatalytic activity of the CQD/TiO2 composites was tested using naphthalene as the target pollutant. For the photodegradation experiments, a photochemical reactor equipped with a xenon arc lamp simulated sunlight irradiation

CQDs were successfully synthesized using marine biomass, specifically S.H., through a straightforward hydrothermal method. The CQD/TiO2 composites were then expertly crafted using an ultrasonic technique. This study confirmed that macroalgae serve as an effective precursor for CQDs.

The dilute sulfuric acid pretreatment not only enhanced the combination and adsorption performance of the CQDs but also improved the synthesis of the CQD/TiO2 composites, significantly boosting their photocatalytic activity. As the concentration of CQDs in the CQD/TiO2 composites increased, the photocatalytic efficiency for degrading naphthalene initially rose, peaking at 86.63 % efficiency with a 10 mL CQD loading before slightly diminishing with further additions.

Furthermore, the degradation of naphthalene under visible light conditions revealed a synergistic interaction between the TiO2 and CQDs, markedly enhancing the generation of reactive oxygen species. Additionally, the nitrogen derived from the S.H. macroalgae was found to accelerate the photocatalytic process. Kinetic analysis indicated that the photocatalytic activity of the CQD/TiO2 composites adhered to a pseudo-first-order reaction.

In summary, this study illustrated the practicality of using bio-CQD/TiO2 composites for effective naphthalene removal under sunlight irradiation and provided valuable insights into leveraging macroalgae as a resource in environmental remediation.

Chen, Y., Hong, C., Xu, Q., Zheng, H., Wang, C., Lu, H., Zhang, S., Du, M., Zeng, G. (2024). Visible Light Enhancement of Biocarbon Quantum-Dot-Decorated TiO2 for Naphthalene Removal. Molecules, 29(11), 2708. https://doi.org/10.3390/molecules29112708, https://www.mdpi.com/1420-3049/29/11/2708

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Samudrapom Dam is a freelance scientific and business writer based in Kolkata, India. He has been writing articles related to business and scientific topics for more than one and a half years. He has extensive experience in writing about advanced technologies, information technology, machinery, metals and metal products, clean technologies, finance and banking, automotive, household products, and the aerospace industry. He is passionate about the latest developments in advanced technologies, the ways these developments can be implemented in a real-world situation, and how these developments can positively impact common people.

Please use one of the following formats to cite this article in your essay, paper or report:

Dam, Samudrapom. (2024, June 14). Bio-Carbon Quantum Dots Boost TiO2 Photocatalytic Performance. AZoQuantum. Retrieved on June 14, 2024 from https://www.azoquantum.com/News.aspx?newsID=10320.

Dam, Samudrapom. "Bio-Carbon Quantum Dots Boost TiO2 Photocatalytic Performance". AZoQuantum. 14 June 2024. <https://www.azoquantum.com/News.aspx?newsID=10320>.

Dam, Samudrapom. "Bio-Carbon Quantum Dots Boost TiO2 Photocatalytic Performance". AZoQuantum. https://www.azoquantum.com/News.aspx?newsID=10320. (accessed June 14, 2024).

Dam, Samudrapom. 2024. Bio-Carbon Quantum Dots Boost TiO2 Photocatalytic Performance. AZoQuantum, viewed 14 June 2024, https://www.azoquantum.com/News.aspx?newsID=10320.

Do you have a review, update or anything you would like to add to this news story?

John Durcan of IDA Ireland highlights the nation's surge in quantum computing, emphasizing R&D growth, key tech partnerships, and the need for skilled talent.

Markus Müller discusses a new qubit design using rare-earth ions for dense, coherent quantum systems, advancing quantum computing scalability.

Kate Brown and Harsh Mathur

In a new feature on AZoQuantum, we speak with Associate Professor Kate Brown and Theoretical Physicist Harsh Mathur about their research investigating Modified Newtonian Dynamics and its implications for the Ninth Planet theory.

The SideKick QCL Controller offers a low-noise laser control solution, ensuring stable and precise operation for demanding laser applications.

LabOne Q is a new software framework that accelerates quantum computing progress on Zurich Instruments’ hardware. With LabOne Q, users can design complex quantum experiments with an intuitive, high-level programming language.

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from AZoNetwork.com.

A few things you need to know before we start. Please read and accept to continue.

Azthena may occasionally provide inaccurate responses. Read the full terms.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

AZoQuantum.com - An AZoNetwork Site

Bio-Carbon Quantum Dots Boost TiO2 Photocatalytic Performance

Titanium Dioxide Coating On Glass Owned and operated by AZoNetwork, © 2000-2024