Blog

Five Things Construction Specialties Learned from Shaking a 10-Story Building

HORIZONTV FEATURING BD+C: WATCH EPISODES ON DEMAND AT HORIZONTV

Manufacturer to apply practical insight from seismic shake test to future R&D of modular stair systems Pipeline Joints

Five Things Construction Specialties Learned from Shaking a 10-Story Building

Manufacturer to apply practical insight from seismic shake test to future R&D of modular stair systems

Construction Specialties (CS) is the only manufacturer in the market that can claim its modular stair system can withstand 100 earthquakes. Thanks to extensive practical testing conducted this spring at the University of California San Diego (UCSD) on the tallest building ever to be seismically tested, CS has identified five significant insights that will impact all future research and development in stair solutions.

The building specimen, a 10-story mass timber structure, was built to undergo testing as part of the Natural Hazards Engineering Research Infrastructure (NHERI) TallWood Project, an industry-wide initiative to prove the seismic resilience of mass timber and its strength as a low-carbon structural building material. The project investigated the capability of tall mass timber buildings to withstand seismic events through a robust, university-backed testing process that conducted more than 100 earthquake simulations over the course of several weeks. It is the world’s tallest full-scale building ever tested on an earthquake simulator or shake table.

The structure was built from materials provided by wood and building product manufacturers from across the industry. In addition to a series of expansion joint covers, CS contributed DriftReady Stairs to serve as the only access point between each of the 10 floors. Instead of acting like a brace and transferring damaging forces back to the building, this dynamic system flexes and accommodates movement without impacting the stair connection or the surrounding structure. This ensures the stairs are safe for occupants and first responders to use during and following a disaster event.

NHERI TallWood simulated 100 seismic events and, in some cases, replicated the exact motion experienced in some of the most notable disasters, including the 6.7 magnitude Northridge earthquake and the 7.7 magnitude Chi-Chi quake. “Given the average time span in between seismic events, it would take thousands of years for one building to experience this many earthquakes,” says Kevin Smith, P.E., CWI, Senior Engineering Manager at CS. “In only a few weeks’ time, we were able to gather more data than a building’s typical life span could ever provide.”

While CS conducted extensive testing of DriftReady components of its modular stair systems when it was in development, the NHERI TallWood Project presented an opportunity to learn how the full-scale modular stair system performs under seismic duress in a multi-story application. CS believes that involvement and learnings from projects like this are invaluable not only to advancing the company’s solutions but also to helping the entire marketplace build better buildings to protect people and spaces more effectively.

By participating in this testing, CS identified five key takeaways with application to all future research and development in modular stairs:

“Projects like this let us put our solutions and engineering expertise to the test in a more realistic simulation,” says Smith. “As a manufacturing company, we work hard to develop the best-engineered solutions for the needs of the market. This project allows us to dig deep and educate ourselves on how our solutions perform with adjacent systems in an earthquake and in the most realistic settings possible, outside of actual disaster events. The ultimate goal is to improve the resilience of the building itself and the components that are critical to life safety.”

The NHERI TallWood Project could pave the way for changes in building codes for residential and commercial structures that could lead to more widespread adoption of mass timber as a sustainable, strong, and versatile building material — especially in areas prone to seismic activity. It could also validate mass timber and other technologies as vehicles to help make buildings safer and more resistant to earthquake activity. Findings of the construction and testing of the building will be published later this year and, if deemed repeatable and scalable, could have implications for the broader AEC industry and the built environment at large. The project was supported by Think Wood, its parent organization the Softwood Lumber Board (SLB), and its partner organizations WoodWorks and the Binational Softwood Lumber Council (BSLC), among others.  

To learn more about the NHERI TallWood Project, please click here.

About Construction Specialties  Founded in 1948, Construction Specialties (CS) is a family-owned building products manufacturer that provides solutions to challenges that architects, designers, contractors, building owners, and facility managers face every day. Since inventing the first extruded louver, CS has become a global leader in Acrovyn interior wall protection, impact-resistant doors, entrance flooring including GridLine®, expansion joint covers, architectural louvers and grilles, sun controls, explosion and pressure relief vents, and cubicle curtains and tracks. Drawing upon our decades of experience, CS provides extensive services resulting in standard and custom, high-quality products which can be found in some of the world’s most significant architecture. For more information about CS products and solutions, please visit www.c-sgroup.com. 

The facility anticipates continued demand growth.

Hines and DLR Group are moving forward on multiple projects using engineered wood.

Gensler's Erik Barth, architect and regional design resilience leader, shares considerations for developers when looking at mass timber solutions.

Here are five reasons why it has become increasingly evident that mass timber is ready to shape the future of laboratory spaces. 

Here are some of the key trends Skanska is seeing in the aviation sector, from congestion solutions to sustainability.

Five winners were selected to share a $2 million prize in the 2023 Mass Timber Competition: Building to Net-Zero Carbon. The competition was co-sponsored by the Softwood Lumber Board and USDA Forest Service (USDA) with the intent “to demonstrate mass timber’s applications in architectural design and highlight its significant role in reducing the carbon footprint of the built environment.”

New York City Economic Development Corporation (NYCEDC) recently launched New York City Mass Timber Studio, “a technical assistance program to support active mass timber development projects in the early phases of project planning and design.”

The project, designed by Seattle-based architecture firm BuildingWork, was conceived with the history and culture of the local Swinomish Indian Tribal Community in mind.

For all its advantages, mass timber also has a less-heralded quality: its acoustic challenges. Exposed wood ceilings and floors have led to issues with excessive noise. Mass timber experts offer practical solutions to the top five acoustic issues in mass timber buildings.

The Edes Building, a two-story art gallery and wine bar in the Silicon Valley community of Morgan Hill, will prominently feature mass timber. Cross-laminated timber (CLT) and glulam posts and beams were specified for aesthetics, biophilic properties, and a reduced carbon footprint compared to concrete and steel alternatives.

The facility anticipates continued demand growth.

Hines and DLR Group are moving forward on multiple projects using engineered wood.

Gensler's Erik Barth, architect and regional design resilience leader, shares considerations for developers when looking at mass timber solutions.

Here are five reasons why it has become increasingly evident that mass timber is ready to shape the future of laboratory spaces. 

© 2023 copyright Building Design+Construction. All rights reserved.

Five Things Construction Specialties Learned from Shaking a 10-Story Building

Flanged Rubber Bellows Each day, our editors assemble the latest breaking industry news, hottest trends, and most relevant research, delivered to your inbox.