Blog

Where and How to Vent Injection Molds: Part 3 | Plastics Technology

A 360-degree look at resin conveying systems: types, operation, economics, design, installation, components and controls.

This Knowledge Center provides an overview of resin moisture and the drying process, including information on the best drying practices for your manufacturing facility. Plastic Fishing Bucket Mold

Where and How to Vent Injection Molds: Part 3 | Plastics Technology

Combat the skilled labor shortage using this comprehensive resource to train your own plastics processing experts.

Deep dive into the basics of blending versus dosing, controls, maintenance, process integration and more.

This Knowledge Center provides an overview of the considerations needed to understand the purchase, operation, and maintenance of a process cooling system.

Learn about sustainable scrap reprocessing—this resource offers a deep dive into everything from granulator types and options, to service tips, videos and technical articles.

While the major correction in PP prices was finally underway, generally stable pricing was anticipated for the other four commodity resins.

Despite price increase nominations going into second quarter, it appeared there was potential for generally flat pricing with the exception of a major downward correction for PP.

First quarter was ending up with upward pricing, primarily due to higher feedstock costs and not supply/demand fundamentals.

Despite earlier anticipated rollover in prices for most of the volume commodity resins, prices were generally on the way up for all going into the third month of first quarter.  

While price initiatives for PE and PVC were underway, resin prices had rollover potential for first two months of 2024, perhaps with the exception of PET.

Flat-to-downward trajectory for at least this month.

Resin drying is a crucial, but often-misunderstood area. This collection includes details on why and what you need to dry, how to specify a dryer, and best practices.

Take a deep dive into all of the various aspects of part quoting to ensure you’ve got all the bases—as in costs—covered before preparing your customer’s quote for services.

In this collection of articles, two of the industry’s foremost authorities on screw design — Jim Frankand and Mark Spalding — offer their sage advice on screw design...what works, what doesn’t, and what to look for when things start going wrong.

In this collection, which is part one of a series representing some of John’s finest work, we present you with five articles that we think you will refer to time and again as you look to solve problems, cut cycle times and improve the quality of the parts you mold.

Gifted with extraordinary technical know how and an authoritative yet plain English writing style, in this collection of articles Fattori offers his insights on a variety of molding-related topics that are bound to make your days on the production floor go a little bit better.

In this three-part collection, veteran molder and moldmaker Jim Fattori brings to bear his 40+ years of on-the-job experience and provides molders his “from the trenches” perspective on on the why, where and how of venting injection molds. Take the trial-and-error out of the molding venting process.

Mike Sepe has authored more than 25 ANTEC papers and more than 250 articles illustrating the importance of this interdisciplanary approach. In this collection, we present some of his best work during the years he has been contributing for Plastics Technology Magazine.

In this collection of content, we provide expert advice on welding from some of the leading authorities in the field, with tips on such matters as controls, as well as insights on how to solve common problems in welding.

Mold maintenance is critical, and with this collection of content we’ve bundled some of the very best advice we’ve published on repairing, maintaining, evaluating and even hanging molds on injection molding machines.

Thousands of people visit our Supplier Guide every day to source equipment and materials. Get in front of them with a free company profile.

NPE2024: Lowering barriers to additive manufacturing adoption in toolmaking.

Allegheny Performance Plastics turned to 1factory's cloud-based manufacturing quality control software for streamlined, paperless quality systems.    

To design the best mixers for single screws, you must completely understand how polymer moves through a mixer channel or groove.   

NPE2024: Focus is on additives for plastics including PVC and WPC industries.

At NPE2024, Novatec moves to rewrite the rules for material conveying with patent-pending smart-pump technology.  

While the major correction in PP prices was finally underway, generally stable pricing was anticipated for the other four commodity resins.

With no minimum order and an impeccable record of on-time delivery, Precision Color Compounds is becoming a force in the color masterbatch business.

Thermosets were the prevalent material in the early history of plastics, but were soon overtaken by thermoplastics in injection molding applications.

After a six-year hiatus, this year’s show was a resounding success, with meaningful technologies on display that will help processors run their businesses more efficiently.  

Key factors for the progress are innovative materials, advanced automation and precision engineering.   

Topping five other entries in voting by fellow molders, the Ultradent team talks about their Hot Shots sweep.

Serendipitous Learning Opportunities at PTXPO Underscore the Value of Being Present.

Introduced by Zeiger and Spark Industries at the PTXPO, the nozzle is designed for maximum heat transfer and uniformity with a continuous taper for self cleaning.

Ultradent's entry of its Umbrella cheek retractor took home the awards for Technical Sophistication and Achievement in Economics and Efficiency at PTXPO. 

technotrans says climate protection, energy efficiency and customization will be key discussion topics at PTXPO as it displays its protemp flow 6 ultrasonic eco and the teco cs 90t 9.1 TCUs.

Shibaura discusses the upcoming Plastics Technology Expo (PTXPO) March 28-30

Oerlikon HRSflow’s T-Flow HRS control has launched with three models that are configurable to multiples of six zones.

NPE2024: Dukane’s new Ultrasonic Thin Wall welding system is well suited for welding applications of PP to PP TD25 painted parts.

Series offers higher output, lower melt temperatures and energy savings.  

Noting that geopolitical changes require new corporate strategies, European plastics and rubber machinery trade groups announced that incoming orders fell 22% in 2023.

System tracks, controls and saves everything from material recipes to process parameters, operator activity from logging on to start, to emergency stops and more.  

Unit is designed to match the requirements of feeding low bulk density fillers and materials in the compounding process.  

Mixed in among thought leaders from leading suppliers to injection molders and mold makers at the 2023 Molding and MoldMaking conferences will be molders and toolmakers themselves. 

After successfully introducing a combined conference for moldmakers and injection molders in 2022, Plastics Technology and MoldMaking Technology are once again joining forces for a tooling/molding two-for-one.

Multiple speakers at Molding 2023 will address the ways simulation can impact material substitution decisions, process profitability and simplification of mold design.

When, how, what and why to automate — leading robotics suppliers and forward-thinking moldmakers will share their insights on automating manufacturing at collocated event.

As self-imposed and government-issued sustainability mandates approach, injection molders reimagine their operations.

August 29-30 in Minneapolis all things injection molding and moldmaking will be happening at the Hyatt Regency — check out who’s speaking on what topics today.

Get your clicking finger in shape and sign up for all that we have in store for you in 2023.  

Molding 2023 to take place Aug. 29-30 in Minnesota; Extrusion 2023 slated for Oct. 10-12 in Indiana.

Join this webinar to learn about Conair's patented Conveying with Optimizer system, which utilizes artificial intelligence (AI) to overcome resin conveying issues automatically. Conveying with Optimizer uses valves, remote sensors and AI to eliminate conveying challenges that operators face daily throughout the plant. With this new fully-retrofittable solution, interruptions like clogged filters, air leaks, changes in density or distance, moisture changes, and operators making manual adjustments can all be eliminated with Conair's Conveying with Optimizer. Agenda: What exactly is Conveying with Optimizer? What are the benefits of using Conveying with Optimizer? What problems does Conveying with Optimizer overcome? How to upgrade your system

Cooling time is typically the longest step of the molding process. How can you make it more productive? Learn how cooling time can be turned into production time by running two molding processes simultaneously on a single molding machine. For longer cycles, this can mean twice the productivity. In this webinar, you'll learn more about the Shuttle Mold System and how to calculate its potential productivity impacts for your application. Agenda: Learn how the Shuttle Mold System can deliver value to your business See the recent technical updates made to the system Calculate the potential impact on productivity

Discover possible applications in large format printing including layup tools, transport modules, film fixation devices, design components and enclosures. These are used in various industries such as automotive, aerospace, architecture and many others. Agenda:  Possible applications in large format printing: layup tools, transport modules, film fixing devices, design components and enclosures. Process reliability and component quality in component production Pros and cons of the technology Sneak peek into current development projects—What will the large format printing of tomorrow look like?

In this webinar, Cold Jet will discuss some of the ways processors use dry ice such as in-machine mold cleaning at operating temperatures, de-flashing or de-burring parts, improving OEE scores, extending mold life, cleaning parts before painting, post-processing 3D printed parts, lowering GHG emissions, and monitoring and reporting the process. Agenda: Cold Jet Overview & Dry Ice 101 Understanding the Process and Fine-Tuning Techniques Case Studies: Applications in Plastics Monitoring the Process Exploring the Importance of Dry Ice Cleaning in an ESG Era

Finding it hard to get technical talent? Experiencing the pain of a knowledgeable, long-term employee's retirement? Learn how plastics processors are training generative AIs on their operations and unlocking the value from their tribal knowledge. Plastics processors are training generative AI models on their operations — from machine manuals to tools, polymers, procedures, maintenance records and engineering projects. Applying generative AI in the right ways can lower plastics processors' costs, improve overall equipment effectiveness (OEE) and upskill teams. In this webinar, you'll learn how to deploy AI technical assistants to your teams, what works and what doesn't, and how to use AI to build an organization that never loses tribal knowledge and fosters inter-team collaboration. Agenda: What is generative AI and how can its cognitive abilities be applied to plastics? Case study: how an injection molder trained a large language model on manuals and maintenance records to reduce downtime Case study: using generative AI in engineering teams to improve product development Live demonstration of a generative AI deep-trained on plastics knowledge Looking to the future: five predictions for an AI-augmented workforce in plastics

Turnaround time can be as low as 24 hours, although two or three days might be more typical. Rapid prototyping like this is especially useful to quickly identify critical end-use part geometries that will work in the molding process. Key components include material choice, 3D printing technology selected, use of adaptable mold bases for the mold inserts and implementation of appropriate injection molding process conditions. This presentation will review work conducted toward the assessment of a high-stiffness, high-temperature-resistant ceramic modified urethane acrylate for injection molding inserts. Agenda:  Guide for 3D-printed injection mold inserts Optimization of digital light processing (DLP) printing Compatibility with various thermoplastics Real-world application success stories

The Society Plastics Engineers (SPE) Extrusion Division and the SPE Eastern New England Section will co-host the Screw Design Conference-Topcon on June 19-20, 2024 @ UMass Lowell in Lowell, MA.  This highly technical program will focus upon screw design principles for single and twin screw extruders with wide ranging topics relating to screw designs for feeding, melting, mixing, venting and pumping plastics products and parts.   Areas of focus will include screw designs for melt temperature and gel management, gel minimization, bioplastics, recycled materials and foaming.   In addition to the technical sessions, a tour of the UMass Lowel Plastics Processing Laboratories will be integrated into Day 2 of the event.    This program is not just for screw designers, but to help anyone responsible for any type of extrusion operation to evaluate existing extrusion equipment; and also to prepare for future projects. Technical Chair: Eldridge M. Mount III, e-mail emmount@msn.com Corporate sponsorships - A limited # of corporate sponsorships (15) are available on a 1st come basis.  Included is a 6’ tabletop display (must fit on table), denotation in all promotional activities, and 1 no charge registration.  To become a sponsor contact: Charlie Martin, Leistritz Extrusion, e-mail cmartin@leistritz-extrusion.com, cell 973-650 3137 General information:   A reception on Day 1 and a tabletop display area will allow the attendees to meet and discuss state-of-the-art screw technologies with industry experts.  The SPE Extrusion Division will issue a “Screw Design Certificate” to all participants who have attended the program.  Students are encouraged to attend and will receive a discounted rate.   For additional information contact:  Program Chair:  Karen Xiao, Macro Engineering, KXiao@macroeng.com

Debuting in 2010, the Parts Cleaning Conference is the leading and most trusted manufacturing and industrial parts cleaning forum focused solely on delivering quality technical information in the specialized field of machined parts cleansing. Providing guidance and training to understand the recognized sets of standards for industrial cleaning, every year the Conference showcases industry experts who present educational sessions on the latest and most pressing topics affecting manufacturing facilities today.  Discover all that the 2022 Parts Cleaning Conference has to offer!

Presented by Additive Manufacturing Media, Plastics Technology and MoldMaking Technology, the 3D Printing Workshop at IMTS 2024 is a chance for job shops to learn the emerging possibilities for part production via 3D printing and additive manufacturing. First introduced at IMTS 2014, this workshop has helped hundreds of manufacturing professionals expand their additive capabilities.  

Formnext Chicago is an industrial additive manufacturing expo taking place April 8-10, 2025 at McCormick Place in Chicago, Illinois. Formnext Chicago is the second in a series of Formnext events in the U.S. being produced by Mesago Messe Frankfurt, AMT – The Association For Manufacturing Technology, and Gardner Business Media (our publisher).

Questioning several “rules of thumb” about venting injection molds.

This month’s column questions several “rules of thumb” about venting and is the third part in a three-part series. Part 1 in March addressed the basics of mold venting, while Part 2 in April dove into details of vent shape, dimensions, surface finish and more.

One rule of thumb says to vent the cold well opposite the sprue. Unless you’re concerned about the almost nonexistent possibility of getting a burn mark on the bottom of the cold well, which you might grind up and reprocess later, there is no need to add a vent there. The “slip fit” between the cold-well ejector pin and its bore is more than sufficient. What you may want to do is question the rules of thumb.

Another rule of thumb says you should add a vent to the runner in a two-plate or three-plate mold. That seems to make sense, because there is often a lot of air inside a runner system, and it helps to exhaust as much of it as possible so it doesn’t go into the cavity. Yet air, like plastic, takes the path of least resistance. Why would it want to squeeze through a vent 0.0005 to 0.0020 inch deep, when it can flow freely through a gate that is 10, 20, even 50 times deeper?

The answer is, it won’t—at least not until the air in the entire system (runner and cavity) starts to be compressed and build up pressure. When the pressure gets high enough, that’s when the vents in the runner become the paths of least resistance. Wherever the melt flow front is located when the pressure starts to build, any vent before that position is virtually useless.

Vents for flash traps can be much deeper.

Air volume is inversely proportional to the pressure applied to it. Just 150 psi of pressure will reduce the volume of air in a cavity by roughly a factor of 10. That’s why the most important thing to consider when trying to decide whether you need to vent a runner or not, is the ratio of the volume of air in the runner, divided by the total volume of air in the mold (runner plus all the cavities). Many molds have short runners feeding just one or two large parts. They have a small runner-air-volume ratio — usually less than 0.25. Venting any part of these runners is a waste of time.

Other molds have long runners, with several secondary runner branches feeding numerous parts, such as in an eight-, 16- or 32-cavity mold. This is where the runner-air-volume ratio can be high—about 0.75 or more. Venting these types of runners can be beneficial.

FIG 1 Cross-section of a full-round runner with flash traps. Images: J. Fattori

There is an effective trick for getting a significantly greater amount of air out of a runner system and that is to machine a flash trap, as shown in Fig. 1. Flash traps not only help prevent parting-line damage, they are also excellent at capturing air. The molten material will flow down the center of the runner channel first, leaving most of the flash trap empty of material.

When the pressure starts to rise due to either the air being compressed or the resistance of the plastic flow into the cavities, the material will start to push outward into the flash trap. If the flow front has not reached the end of the flash trap when the pressure starts to rise, the air inside the entire flash trap will compress — meaning more air volume that needs to be vented quickly. Vents for flash traps can be much deeper than material manufactures recommend— often double, sometimes triple their value. These deeper vents will now have a path of lower resistance then the other vents in the mold. Vented flash traps are just as effective in parabolic and trapezoidal runners as in full-round runners.

Whenever possible, try not to gate a part directly from the end of a runner. It is preferable to gate it from the side. We all know it is a good idea to have a runner overflow well at every runner turn, to capture any potential cold slug. The same logic applies to the end of the runner. You don’t want any potential cold slug to plug the gate or go directly into the cavity. You also want to vent the end of the runner to get as much air out as you can; but not too close to the gate, which reduces the amount of critical bearing surface. The gate is subject to some of the highest plastic pressures in the mold. You want to maximize the surface area around the gate to ensure a good seal and protect it from damage due to flash.

FIG 2 It’s good practice to have the runner perpendicular to the gate.

Ideally, the runner should be perpendicular to the gate, as shown in Fig. 2. Extend the runner past the gate by 1½ times its diameter, the typical length of a runner overflow. Now you have an overflow well to trap any debris in front of the melt flow, and you can add a vent at the end of the runner without sacrificing bearing surface near the gate.

FIG 3A Typical corner ventin

There is yet another rule of thumb: “Always vent at the end of fill.” That’s a good general rule, but don’t take it literally. Let’s say you have a mold making a simple edge-gated, dart-impact plaque. The standard practice is to put a vent in each of the two corners opposite the gate — the last places to fill, as shown in Fig. 3A.

FIG 3B Improved (double) corner venting.

If you look closely at the vent land in Fig. 3A, you can see that it varies in length — shortest in the middle and longer as it goes toward the outer edges. That’s a really bad design. If you want to dramatically increase the life span of corner vents, double the quantity and put them about 1/16 to ⅛ inch away from the corners, as shown in Fig. 3B. If you take into consideration that the last little bit of trapped air in a cavity is usually very compressed, extremely hot and highly saturated with corrosive volatiles, this venting layout will help defer erosion of the vents and the cavity steel.

FIG 3C Best (full-length) corner venting.

The best method of venting this type of part (Fig. 3C) is to put a vent along the entire edge, but just shy of the corners. This results in a much greater amount of vent flow area for the compressed air to exhaust through, and still protects the corners.

Figures 3A, B and C depict different examples of “spot” vents. Figure 3C, with a very wide spot vent, leads me to the next type of static or stationary vent, called a continuous or peripheral vent. Quite simply put, this type of vent runs completely, or almost completely, around the entire part. If it’s a round part, some people call this a ring vent. If it’s a square part, some people call this a perimeter vent. It doesn’t matter whether it is round, square or any shape imaginable. If the vent runs around the outer edge of the part, it’s a continuous vent. If there is a small gap between a stripper-plate shutoff and the core, this is also a continuous vent. The purpose of continuous vents is to maximize the airflow area, which is extremely important if the process requires a very fast fill.

FIG 4 A semi-continuous vent around a color-chip cavity insert.

Figure 4 shows a continuous vent around most of a cavity for a simple color-chip mold. The only place where there is no vent is on either side of the gate. If you can picture how the material flows into the cavity, or if you performed a mold-flow simulation, you would realize that all four corners of the part are locations where air can get trapped, not just the two corners opposite the gate. That is why it is important to add vents in the corners on the gate end, as well as opposite the gate. Also, notice how the end of the runner has a nice wide vent off to its side, as opposed to a narrow vent at the end.

No matter what type of vents you use, follow the guidelines discussed in last month’s article, “Part 2: Back to Basics on Mold Venting” — especially those on grinding and polishing the vents in the same direction as the flow of air.

Continuous vents around the cavity maximize the amount of airflow area.

One location that frequently has a venting problem is at the bottom of a blind rib or other types of freestanding projections, such as a solid or hollow boss. If a projection is more than 1½ times as deep as it is thick, there’s a good chance it will trap air, which can make it difficult to fill or cause the trapped air to “diesel” and leave a burn mark. That’s an important point: It is not the depth that causes the issues; it’s the ratio of the thickness to the depth. With ribs, these problems worsen when they are situated perpendicular to the flow of material.

One of the most common ways to vent a deep rib is to install an insert in the mold. The insert forms a split line adjacent to, or preferably in the middle of, the rib. Some people call this a “natural” vent, which is a vent created by the clearance between any two mold components, such as core inserts, cams, lifters and ejector pins.

Mold inserts are commonly used for deep ribs because it is much easier and less expensive to machine and polish a rib cut into the side of an insert than it is to EDM a blind rib and draw polish it to a fine finish with a thin stone afterward. Another advantage of incorporating a rib insert is that it eliminates the potential for the core to crack, which originates at the bottom of the rib. Ribs have a lot of surface area, and the injection pressure tries to spread the steel apart like a wishbone at Thanksgiving dinner. If the mold is overpacked, an insert will usually shift away from the core a couple of thousandths.

It is for this reason that vents on mold inserts should be on the low side of the material manufacturer’s recommended depth. As the insert “breathes” during injection, the vents get slightly larger. However, you can add multiple vents — or vent the entire width of the insert at the end of fill location — to compensate for the shallower depth.

There is a downside to having a split line along a rib: trying to keep the vent(s) clean. Static vents on the parting line are easy to clean in the press. Static vents at the bottom of a deep rib on an insert usually require complete disassembly of the mold. That is why some people prefer to use vented ejector pins at the bottom of a rib. Ejector pins are dynamic or “moving” vents. You can clean a good portion of the pins with the mold still in the machine by advancing the ejector plate fully forward.

FIG 5 A deep rib with offset KO pins.

Ejector pins at the bottom of a rib are usually a smart idea. Ribs tend to stick in the mold with a tremendous amount of holding force. Ejector pins directly under ribs are about the best method to ensure that the ribs eject under various molding conditions. So how do you decide which way to go — insert the mold to keep the cost down, or keep the core solid and use ejector pins to prolong mold operation before maintenance?

FIG 6 A core insert for a deep rib with offset KO pins.

Why not enjoy the benefits of both methods by combining them together, as shown in Fig. 5 and 6?

Most designers typically locate ejector pins in the center of a rib. That’s fine if the rib is machined in a solid. When using a mold insert, you can’t put the ejector pins in the center of the rib, because a portion of the shaft of the pin will be on the split line. Reducing the ejector pin diameter is a bad solution. Small pins have the nasty habit of galling, seizing, bending and breaking. If you offset the ejector pins, you can stay with the larger diameter. They won’t encroach on the split line, and you have a sufficient amount of steel between the pin and the insert.

Some people refer to vented ejector pins as “self-cleaning.” Similar to stationary vents, they are not self-cleaning. They are self-clearing. Anyone who has wiped the sludge off vent pins while performing a routine preventive maintenance knows this all too well.

In the 1947 book, Injection Molding of Plastics, the late Dr. Islyn Thomas summarized the need for a particular vent location better than I ever could. He said, “Vent cavities at weld lines or junction points where two or more material streams meet and fuse into a solid mass. Release of trapped air in those cases will permit intimate contact between converging streams and result in the improved strength and appearance of the molded article.”

That was 72 years ago and it absolutely holds true today. Weld lines and meld lines are formed by converging melt streams. The most common causes of converging streams are: (1) Having two or more gates per cavity; (2) having an opening in the part that material must flow around; or (3) having varying wall thicknesses or an improper gate location, which creates a “backfill” condition.

You can use core inserts anywhere there is trapped air, such as in the case of converging melt streams. They can be square, round or any shape. Even a vent pin, whether it be stationary or dynamic, is a type of core insert when you use it specifically to let air escape. When using a vent pin, do not put the center of the pin in the center of the trapped air location. To achieve the best results, locate an edge of the vent pin at the center of the air trap. When you have two or more gates per cavity, the location of the trapped air can shift a little, due to varying process conditions. You might need to use a large vent pin or multiple vent pins to compensate for this variation.

Vents do not necessarily need to have a path for the air to exhaust out to the atmosphere.

If you can tolerate a small boss on the underside of the part, it is best to recess the vent pin ¼ inch or more. It transforms a weak weld line into a stronger meld line, because the material continues to flow into the boss created by the recessed pin. If the boss interferes with the function of the part, you can contour the recessed pin like a “Z-Puller” for a cold well. Depending on the type of molding material, you can usually snap it off after the part is ejected.

If you have an opening in a part, such as in the case of a picture frame, you can add vents to the center shutoff surface in order to exhaust any trapped air on the inner edges of the part. The relief channel(s) on these vents can go to a drilled through-hole in the shutoff. You can also use this vent and relief method on the faces of cams and lifters. Anywhere there is steel-on-steel contact, there is usually an opportunity to add a vent.

Vents do not necessarily need to have a path for the air to exhaust out to the atmosphere. On dozens of occasions, I have used vents that exhausted air into a blind pocket. For example, I once had a ½-inch diameter core pin form a through-hole in a thick part. The material stream naturally flowed around the pin and converged on the opposing side. Venting the outer diameter of the core pin did a good job of exhausting the small amount of trapped air on the bottom of the part, but the top of the part still showed an occasional burn mark.

I drilled a 1/16-inch diameter by ⅜-inch deep hole in the face of the core pin, where it shuts off against the cavity. A vent was ground on the top of the pin, oriented in the direction of the converging material streams. The blind hole was large enough to capture the small amount of trapped air. Every time the mold opened, the compressed air inside the pin was relieved. Blind vents come in very handy when you discover a problem when sampling a new mold. When there’s nowhere to exhaust the air due to a waterline, lifter or some other obstacle, it’s nice to have a plan B.

Even if you don’t have a filling or burning issue, venting freestanding projections (whether on the core side or the cavity side) is always a good idea. Air actually flows through vents in both directions. While the more common scenario is for the air to exhaust out of the cavity during injection to prevent filling and burning issues, vents also allow air to enter the cavity during mold opening and ejection. Vents thereby eliminate a vacuum condition that can cause a part or feature to stick in the cavity or on the core.

This vacuum condition can sometimes drive you crazy. Not only can the air pull out of the vent, often the buildup of outgasses comes with it, leaving grease marks on the underside of the part. Still, this reverse venting can enable faster mold opening, as well as reduce the amount of force required to eject the part. In extreme cases, you can feed compressed air through a vent, just as you would with an air poppet valve.

Locate an edge of a vent pin at the center of the trapped air location.

In multicavity molds, not only do you need to vent each cavity the exact same way, you also need to vent every runner branch the exact same way. Otherwise, it can cause an unbalanced fill and pack situation. When it’s all said and done, be sure to update the mold drawings with the final static and dynamic vent locations, widths, depths, types and more. Over time, the vents will most likely wear or collapse. You will need to replace or re-machine them to their original depths.

ABOUT THE AUTHOR Jim Fattori is a third-generation injection molder with more than 40 years of molding experience. He is the founder of Injection Mold Consulting LLC. Contact jim@injectionmoldconsulting.com; injectionmoldconsulting.com.

These humble but essential fasteners used in injection molds are known by various names and used for a number of purposes.

Here's a method to assist with efficient dark-to-light color changes on hot-runner systems that are hot-tipped.

Addressing hot-runner benefits, improvements, and everyday issues from the perspective of decades of experience with probably every brand on the market. Part 1 of 2.

Applying a scientific method to what is typically a trial-and-error process. Part 2 of 2.

Here’s how to get the most out of your stationary mold vents.

Here’s what you need to know to improve the quality of your parts and to protect your molds.

Plastics processors are finding applications for 3D printing around the plant and across the supply chain. Here are 8 examples to look for at NPE2024.

Where and How to Vent Injection Molds: Part 3 | Plastics Technology

Two-Cavity Plastic Coat Hanger Mold Plastics Technology covers technical and business Information for Plastics Processors in Injection Molding, Extrusion, Blow Molding, Plastic Additives, Compounding, Plastic Materials, and Resin Pricing. About Us